TELLURIUM IN ORGANIC SYNTHESIS

V*. X-RAY STRUCTURE OF 8-ETHOXY-4-CYCLOOCTENYLTELLURIUM TRICHLORIDE AND ITS RELEVANCE TO THE TeO ${ }_{2}$-OXIDATION OF ALKENES

J. BERGMAN and L. ENGMAN
Department of Organic Chemistry, Rayal Institute of Technology, S-100 44 Stockholm (Sweden)

(Received April 24th, 1979)

Summary

The molecular structure of 8-ethoxy-4-cyclooctenyltellurium trichloride has bcen determined from three-dimensional X-ray diffraction data. The crystal belongs to the monoclinic system, space group $P 2_{1} / n$, with four formula units in a cell of dimensions: a 7.712(1), b 13.406(3), $c 13.820(2) \AA$ and $\beta 95.18(1)^{\circ}$. The structure was solved by the conventional heavy atom method, and refined by the least-squares procedure to $R=0.025$ for 2199 reflections.

The compound is formed from the corresponding β-chloroalkyltellurium trichloride, obtained from TeCl_{4} and cis, cis-1,5-cyclooctadiene, by an unusually mild solvolytic substitution reaction in ethanol. Similar β-chloroalkyltellurium compounds are postulated as intermediates in the TeO_{2} oxidation of alkenes to alkanediol diacetates and alkanediol monoacetates in HOAc containing a lithium halide, LiX. Oxidation of cis-2-butene and trans-2-butene with $\mathrm{TeO}_{2} / \mathrm{HOAc} / \mathrm{LiBr}$ gave a high preference for cis-stereochemistry in the products while 1-decene showed no stereospecificity.

Introduction

Catalytic systems containing TeO_{2} and HOAc have attracted considerable attention [1,2] in recent years. Ethylene, for example, can be catalytically con-

[^0]verted into ethyleneglycol in high yields (95\%):
$$
\mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{HOAc} \underset{\mathrm{HBr}}{\mathrm{TeO}_{2}} \mathrm{AcOCH}_{2} \mathrm{CH}_{2} \mathrm{OAc}+\mathrm{H}_{2} \mathrm{O}
$$
$\mathrm{AcOCH}_{2} \mathrm{CH}_{2} \mathrm{OAC}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2 \mathrm{HOAc}^{\mathrm{O}}$
$\mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Although this process is used commercially for production of ethyleneglycol (Oxirane in Texas, USA) no mechanistic study has been published so far. One of the early patents [3] suggested a cyclic intermediate I, which would undergo solvolyzis to the corresponding diacetate II.

(I)

(II)

If the cyclic tellurium ester I is the actual intermediate in the oxidation of alkenes, this would give rise to a strong preference for cis-stereochemistry of the diacetates II, by analogy with the MnO_{4}^{-}and OsO_{4} oxidations of alkenes. However, we did not find any such preference with the alkenes examined.

A further indication that a different mechanism may operate, appeared in the reaction of phenylacetylene with the system $\mathrm{TeO}_{2} / \mathrm{HOAc} / \mathrm{LiX}$ [4]:

The introduction of a halogen atom at the triple bond was apparently a result of an electrophilic attack by a hitherto unknown species formed from TeO_{2} and LiX. The addition product subsequently cyclizes to give, after a reductive elimination, the benzo [b] tellurophere derivative III. It seems reasonable that a similar electrophilic attack may occur in the first step of the oxidation of alkenes with TeO_{2}, and it therefore appeared to be of interest to study well-defined compounds of the type \underbrace{x}_{R}, where X is a halogen atom or an oxygen-bearing substituent.

To our knowledge only one well-defined compound of this kind is described in the literature, viz. 2-chloropropyltellurium trichloride [5], the $1 / 1$ addition product from TeCl_{\perp} and propene. However, attempts to repeat this experiment
resulted in mixtures of products, and we therefore decided to look for other β-chloroalkyltellurium trichlorides which could be easily prepared from alkenes and TeCl_{4}.

Results and discussion

SeO_{2} oxidations of alkenes in HOAc with mineral acid catalysis are well-known and give mixtures of alkanediol diacetates and alkanediol monoacetates [6,7]. Substrates such as cis- and trans-2-butene show a high preference for cisstereochemistry in the products. Oxidation of cyclohexene [7] is less specific. The results of TeO_{2} oxidation of the above-mentioned butenes are presented in Table 1. Oxidations were carried out in HOAc in the presence of LiBr , and both 2,3-butanediol diacetates and 2,3-butanediol monoacetates were formed. The stereochemical results are very much alike those obtained with SeO_{2} in the presence of a mineral acid. An overall cis-addition is preferred. The same stereochemistry is present in the diacetates and the monoacetates.

Oxidation of 1-decene with $\mathrm{TeO}_{2} / \mathrm{HOAc} / \mathrm{LiBr}$ gave almost pure 1,2-decanediol diacetate in good yield (87\%). Z-1-Deuterio-1-decene [9] yielded equal amounts of the erythro- and the threo-form as revealed by the ${ }^{1} \mathrm{H}$ NMR spectrum [10]. The oxidations of alkenes with TeO_{2} seems to give varying amounts of diol monoacetates as well as varying stereospecificity depending on the substrate. It was recently shown [8] that benzeneseleninic acid reacts with olefins in acetic acid to give 2 -acetoxyalkylphenyl selenides in good yields. This reaction seems to have much in common with the addition of TeO_{2} to phenylacetylenes and also to our postulated first step of the TeO_{2} oxidation of alkenes, except that the acetate group is replaced by a halogen atom.

In order to further study the reactions of β-chloroalkyltellurium trichlorides, we synthesized the $1 / 1$ adduct from cis, cis- 1,5 -cyclooctadiene and TeCl_{\perp} (IV). This compound was obtained in good yield (64\%) by mixing the two reactants in dry ethanol-free chloroform at $0^{\circ} \mathrm{C}$. A possible bicyclic structure V. could be excluded from the proton-decoupled ${ }^{13} \mathrm{C}$ INMR spectrum which showed eight different peaks.

Compound IV is unstable in air at room temperature and slowly decomposes into a black tar. At $-15^{\circ} \mathrm{C}$ it can be stored for several months. A few hours reflux of IV in ethanol, or even a recrystallization, yielded in good yield (76%) a highly crystalline compound in which a chlorine atom had been replaced by an ethoxy

TABLE 1
OXIDATION OF 2-BUTENES

Substrate	2,3-Butanediol diacetate (\%)	meso/d,l- ratio	2,3-Butanediol monoacetate (\%) ${ }^{\text {a }}$	meso/d,l ratio b
cís-2-Butene	19.3	$89 / 11$	16.0	$91 / 9$
trans-2-Butene	9.2	$35 / 65$	21.1	$33 / 67$

[^1]group as revealed by ${ }^{1} H$ NMR and mass spectral data. However, a choice could

(IV)

(五)
not be made between structures VI and VII. We therefore undertook an X-ray

(DI)

(DI)
crystallographic study which gave conclusive evidence for structure VI, with a trans-orientation of the TeCl_{3} and the ethoxy group. The β-halogen atom of IV seems to be extremely sensitive to nucleophilic attack, probably because of some sort of neighbouring group participation. A similar mechanism has been suggested for the solvolysis of 2-halocyclohexyl selenocyanate, which gave complete retention of configuration at the β-carbon [12]. Treatment of IV with ethylene glycol rapidly yielded a crystalline compound assigned structure VIII from spectroscopic data.

Reduction of IV with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ caused separation of elemental tellurium and regeneration of cis, cis-1,5-cyclooctadiene. The epitelluride IX is a possible intermediate in this reaction. Epitellurides have previously been postulated as intermediates in the conversion of epoxides into alkenes by sodium O, O-diethyl phosphorotelluroate [13].

(ㅍI)

(IX)

Structure analysis
The composition of compound VI, subjected to an X-ray analysis, was known from elemental analysis to be $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{OTe}$. Suitable crystals were obtained by recrystallisation from acetonitrile.

The intensity data were collected at $25 \pm 2^{\circ} \mathrm{C}$ by a computer controlled four-

TABLE 2
CRYSTAL DATA

$a^{\text {a }}$ Byotation in carbon tetrachloride/methyl iodide at $25^{\circ} \mathrm{C}$.
circle diffractometer of type Syntex P2 1_{1}, equipped with a scintillation counter. The crystallographic data are summarized in Table 2.
X-ray data collection. Approximate positions of about 20 reflections were obtained from an oscillation photograph on the diffractometer. These data were used for an automatic determination of the lattice constants. More precise values for the unit cell dimensions were determined from 22 strong reflections with high 2θ-values, and refined using least squares methods. The ω-scan mode was used for the intensity data collection with variable scan speeds, the minimum scan speed being $0.49^{\circ} \mathrm{min}^{-1}$. Methods for background measurements and intensity calculations are described elsewhere [14].

After every 100th reflection the intensities of four check reflections were measured. Their intensities varied within $\pm 5 \%$ during data collection without any trend.

A semi-empirical absorption correction method was used [16]. The intensities of 11 selected reflections, with 2θ values evenly distributed over the 2θ range used, were measured for a full flat-cone rotation around the diffraction vector in steps of 10°. The relative intensity variations obtained were used to correct the intensities of all measured reflections in appropriate 2θ intervals. The largest measured relative reduction in intensity was from 1.00 to 0.82 .

All intensities were corrected for Lorenz and polarization effects and approximate values for scaling and temperature factors were calculated using a Wilson plot. Of the 2500 possible independent reflections for $2 \theta<50^{\circ} 301$ had intensities less than $1.96 \sigma(I)$ and were given zero weight in the following least-squares refinement.

Structure determination and refinements

The structure was solved by the heavy-atom technique. From a three-dimensional Patterson function the tellurium atoms could be identified as occupying the fourfold general position of the space group $P 2_{1} / n$. With the use of the posi-

Fig. 1. Stereoscopic view of the molecule as represented by thermal vibration ellipsoids.
tional parameters for the Te atoms, derived from the Patterson function, a threedimensional electron density map was calculated. The remaining non-hydrogen atoms were easily located. Full-matrix least-squares refinement with individual anisotropic temperature factors for all atoms led to a conventional R index ($\Sigma\left\|F_{0}\left|-\left|F_{c} \| /\left|F_{0}\right|\right.\right.\right.$) of 0.034 . The 17 hydrogen atoms were then located in a new difference map. They were selected from the 25 highest peaks, partly be geometrical reasons.

With all atoms included the refinement was continued until all 204 parameter values showed shifts in the last cycle, less than 1% of the corresponding standard deviations. With all nonhydrogen atoms anisotropic and with the hydrogens isotropic the final R-value was $R=0.025\left(R_{w}=0.034\right) *$ for 2199 observed reflections. Including data with zero weight $R=0.032\left(R_{w}=0.037\right)$ for 2500 reflectións.

The least squares refinements were based on minimization of $\sum w_{i}\left\|F_{0}|-| F_{\mathrm{c}}\right\|^{2}$. The weighting scheme used was $w(\mathrm{~s})=1 /\left(\sigma^{2}\left(F_{0}\right)+\left(0.03 F_{0}\right)^{2}\right)$ with a cut-off limit of $F_{0}>3.92 \sigma\left(F_{0}\right)$. The goodness-of-fit $\left(\Sigma\left(F_{0}-F_{\mathrm{c}}\right)^{2} /(m-s)\right)^{1 / 2}$, where m is the number of reflections used and s is the number of parameters) is 1.0 . Struc-

Fig. 2. Stereoscopic view of the unit cell as represented by thermal vibration ellipsoids.

$$
\begin{aligned}
& \text { F } R_{w} \text { is a weighted } R \text { value defined as } \\
& R_{w}=\left(\sum w_{i \mid l}\left|F_{0}\right|-\left.\left|F_{\mathrm{c}}!^{2} / \Sigma w_{\mathrm{i}}\right| F_{0}\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

TABLE 3
FINAL FRACTIONAL ATOMIC POSITIONAL PARAMETERS WITH ESTIMATED STANDARD DEVIATIONS IN PARANTHESES

ture factors can be obtained from the authors on request.
A stereoscopic view of the molecule with the thermal vibration ellipsoids is given in Fig. 1. A view of the unit cell is given in Fig. 2. Positional and thermal parameters are listed in Tables 3 and 4.

Discussion of the structure

The intramolecular bond lengths and bond angles of the molecule are given in Table 5 . The bond lengths and angles around the tellurium atom are in good agreement with other investigations of similar tellurium(IV) compounds [17]. From the literature it is known that tellurium can have the coordination numbers 4 [18], 5 [5] or 6 [19] in chloro compounds. In the investigated 8 -ethoxy-4cyclooctenyltellurium trichloride, the tellurium atom has 6 neighbours in space. Four of these atoms $(\mathrm{C}(1), \mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{Cl}(3)$) have normal bonding distances. The fifth is the oxygen atom of the ethoxy group which occurs at a distance of $2.419(2) \AA$ from the Te atom. (A normal bonding Te-O-distance is $1.90 \AA$) [21].
table 4
FINAL ISOTROPIC (HYDROGEN ATOMS) AND ANISOTROPIC THERMAL PARAMETERS (\boldsymbol{R}^{2}) WITH ESTIMATED STANDARD DEVIATIONS IN ARENTHESES. The expression used is: $\exp -{ }_{4}\left(B_{1} / h^{2} \pi^{\star 2}+\ldots+2 B_{12} h k a^{* *}+\ldots\right)$.

Atom	D	Atom	B_{11}	D_{22}	$\mathrm{B}_{3} 3$	B_{12}	B_{13}	B_{23}
$\mathrm{H}(1)$	2.2(6)	Te	2.74(1)	3.39(1)	2.29(1)	0,35	0,69(0)	$0.32(0)$
$\mathrm{H}(2)$	$2.7(7)$	Cl(1)	5.67(5)	4.44(4)	3.27 (3)	-1,40(3)	0.72(3)	-0,94(3)
H(3A)	3.5(7)	Cl(2)	3,66(4)	6.05(6)	5.62(4)	-1,35(4)	0,72(3)	-0.14(4)
H(3B)	$3.5(7)$	Cl(3)	5.43(6)	5.01(4)	6.04(4)	2,13(4)	0.83(3)	1.22(3)
$\mathrm{H}(4 \mathrm{~A})$	8.4(14)	0	2.64 (9)	3.76 (10)	2.90(9)	0.19(7)	0.35(7)	-0.47(7)
H(4B)	$4.7(9)$	C(1)	2.83(13)	3.56(14)	2.19(11)	0.23(10)	$0.97(10)$	0.29(10)
H(5)	3.8(7)	$\mathrm{C}(2)$	2.60(12)	3.26(13)	2.86(12)	0.50(11)	0.70(10)	-0.04(10)
H(6)	4.9(10)	C(3)	4.16(18)	3,93(17)	4.32(17)	-0.49(15)	1.69 (14)	0.04(14)
H(7A)	5.9(11)	C(4)	5,48(23)	4,90(21)	6.03(21)	-0.19(19)	2,94(18)	0.50(17)
H(7B)	6.8(12)	C(5)	5.37(21)	6.60(24)	2.78(15)	1,82(19)	1.59(14)	1,31(16)
H(8A)	5.0 (10)	C(6)	4.40(19)	7.35(27)	2.68(14)	0,23(18)	1,13(13)	-0.80(16)
H(8B)	4.7(10)	C(7)	5.62(23)	4.21(18)	3.84(16)	-0.06 (16)	1,43(15)	-1.19(14)
H(9A)	7.3(14)	C(8)	5.60 (22)	3.99(17)	3.72(17)	-0,68(17)	1,85(15)	$-0.99(14)$
$\mathrm{H}(9 \mathrm{~B})$	$7.3(13)$	C(9)	3,20(17)	7,96(29)	3.97(18)	0.24(18)	-0,39(14)	-1.91(18)
H(10A)	8.1(18)	C(10)	5.37(25)	7.20(31)	3.67(18)	0,90(23)	$-0.57(18)$	-1.18(18)
H(10B)	6.8(12)							
H(10C)	10.8(21)							

TABLE 5
INTRAMOLECULAR BOND LENGTHS AND ANGLES WITH ESTIMATED STANDARD DEVIATIONS IN PARENTHESES

$\mathrm{Te}-\mathrm{Cl}(1)$	2.505(1)	$\mathrm{C}(2)-\mathrm{H}(2)$	0.974(36)	$\mathrm{Cl}(1)-\mathrm{Te}-\mathrm{Cl}(2)$	01.51(4)	H(3B)-C(3)-C(4)	111,6(22)	
$\mathrm{Te}-\mathrm{Cl}(2)$	2.355 (1)	$\mathrm{C}(3)-\mathrm{H}(3 \wedge)$	$1.053(38)$	$\mathrm{Cl}(1)-\mathrm{Te}-\mathrm{Cl}(3)$	176.24(4)	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	110.1(43)	
Te-Cl(3)	2.481(1)	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.963 (29)	$\mathrm{Cl}(1)-\mathrm{Te}-\mathrm{C}(1)$	90.36(9)	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{C}(3)$	98.5(32)	
$\mathrm{Te}-\mathrm{C}(1)$	$2.172(3)$	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	$1.087(61)$	$\mathrm{Cl}(2)-\mathrm{Te}-\mathrm{Cl}(3)$	$92.00(4)$	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{C}(5)$	116.4(32)	
$\mathrm{C}(1)-\mathrm{C}(2)$	1,521(5)	$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.894(48)	$\mathrm{Cl}(2)-\mathrm{Te}-\mathrm{C}(1)$	93.65 (9)	$\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{C}(3)$	106.1(30)	
C(2)-C(3)	1.525(5)	$\mathrm{C}(5)-\mathrm{H}(5)$	0.927(40)	$\mathrm{Cl}(3)-\mathrm{Te}-\mathrm{C}(1)$	88.10(9)	H(4B) - C (4)-C(5)	108.5(30)	
$\mathrm{C}(3)-\mathrm{C}(4)$	1.539(6)	$\mathrm{C}(6)-\mathrm{H}(6)$	$0.901(45)$	$\mathrm{Te}-\mathrm{C}(1)-\mathrm{C}(2)$	100.83(20)	$\mathrm{H}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	116.3(24)	
$\mathrm{C}(4)-\mathrm{C}(5)$	1.483(7)	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$0.992(52)$	$\mathrm{Te}-\mathrm{C}(1)-\mathrm{C}(8)$	115.37(25)	$\mathrm{H}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	117,9(24)	
C(5)-C(6)	1.310(7)	$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$0.897(52)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	116.07(30)	$\mathrm{II}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	122.0(29)	
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.48 \mathrm{G(6)}$	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.925(48)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.15(29)	$\mathrm{H}(6)-\mathrm{C}(6)-\mathrm{C}(7)$	113.7(29)	
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.536(7)$	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	$0.953(50)$	$\mathrm{C}(1)-\mathrm{C}(2)-0$	104.49(25)	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	106.3(44)	
$\mathrm{C}(8)-\mathrm{C}(1)$	1.525(5)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	1.051(56)	$\mathrm{O}-\mathrm{C}(2)-\mathrm{C}(3)$	108.71(27)	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(6)$	107.7(29)	
$\mathrm{C}(9)-\mathrm{C}(10)$	1.473(7)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.996(57)	C(2) $-\mathrm{C}(3)-\mathrm{C}(4)$	$115.35(34)$	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{C}(8)$	110.4(29)	
$\mathrm{C}(2)-0$	1.457(4)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~S})$	0.864(65)	$C(3)-C(4)-C(5)$	116.34(40)	$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{C}(6)$	106,3(34)	
C(9)-0	1.442(5)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	1.056(55)	C(4)-C(5)-C(6)	125.66(44)	$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{C}(8)$	112.4(34)	
$\mathrm{C}(1)-\mathrm{H}(1)$	$0.957(32)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.846(76)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	124.09(43)	H(8A)-C(8)-H(8B)	101.8ิ(40)	
				$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	113.07(38)	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{C}(7)$	109.4(30)	
				$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	111.03(36)	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{C}(1)$	113.1(30)	
				$\mathrm{C}(2)-\mathrm{O}-\mathrm{C}(9)$	114.76(28)	$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{C}(7)$	111.7(27)	
				O-C(9)-C(10)	110.06(40)	H(8B) - $\mathrm{C}(8)-\mathrm{C}(1)$	109.3(27)	
				$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{Te}$	98.5(19)	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	98,9(45)	
				$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112.0(19)	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(0)-\mathrm{O}$	104.6(32)	
				$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(8)$	112.1(19)	$\mathrm{H}(0 \mathrm{~A})-\mathrm{C}(9)-\mathrm{C}(10)$	113.9(32)	
				$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{O}$	107.0(20)	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{O}$	114.6(32)	
		.		$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	111.7(20)	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{C}(10)$.	113.8(32)	
	-			$\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	110.2(20)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	113.7(50)	.
				$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.3(30)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	99.8(66)	
				$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{C}(2)$	104.9(20)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{C}(9)$	111.0(42)	
				$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{C}(4)$	108.9(20)	II(10B)-C(10)-C(1)	117.1(59)	
				$\mathrm{H}(3 \mathrm{~B})-\mathrm{C}(3)-\mathrm{C}(2)$	106.2(22)	$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{C}(9)$	103.2(29)	
						$\mathrm{H}(10 \mathrm{C})-\mathrm{C}(10)-\mathrm{C}(9)$.	112.2(51)	

The bonding about tellurium in the free molecule might be considered to be square pyramidal with $\mathrm{O}, \mathrm{Cl}(1), \mathrm{Cl}(2)$, and $\mathrm{Cl}(3)$ in the base, $\mathrm{C}(1)$ at the apex, and the lone-pair of electrons probably occupying the sixth position of an octahedron around tellurium. The basal plane is somewhat distorted with the $\mathrm{O}-\mathrm{Te}-\mathrm{Cl}$ angle being only $61.45(10)^{\circ}$. This could be explained by ring-strain in the four-membered ring formed by $\mathrm{Te}, \mathrm{O}, \mathrm{C}(1)$, and $\mathrm{C}(2)$. As a result of coordination the angle $\mathrm{O}-\mathrm{C}(2)-\mathrm{C}(1)$ is as small as $104.49(25)^{\circ}$.

The sixth close neighbour is a chlorine atom ($\mathrm{Cl}(1)$) which originates from another molecule. This very weakly bonded chlorine atom occurs at a distance of 3.558 (1) \AA from the Te atom and is oriented in the same direction as the lone electron pair (intermolecular angles: $\mathrm{Cl}(2)-\mathrm{Te}-\mathrm{Cl}(1) 82.73(3)^{\circ}, \mathrm{Cl}(1)-\mathrm{Te}-$ $\left.\mathrm{Cl}(1)=81.10(3)^{\circ}\right)$. It is thus completing a distorted octahedral configuration about tellurium in the crystalline solid. The structure can be considered as being built up of dimers with the TeCl_{3}-groups pointing towards one other, donating one of the chlorine atoms. The interaction between the lone electron pair and the chlorine atom is probably due to electron delocalization from Cl to tellurium(IV). Similar delocalization seems to be present also in β-dimethyltellurium diiodide [22]. However, in this compound the effect is larger, as judged by the difference between the $\mathrm{Te} \cdots \mathrm{I}$ and $\mathrm{Te} \cdots \mathrm{Cl}$ distances which is $0.1 \AA$ shorter than the difference in ionic radius between I^{-}and Cl^{-}.

Data program

The program system supplied by Syntex (XTL version 2 [15]) for a NOVA 32K computer with a disk memory unit, was used for the calculations. In addition the thermal-ellipsoid plot program for crystal structure illustrations, ORTEP 2 was used [20].

Concluding remarks

Our hypothesis, that the first step in TeO_{2} oxidations of alkenes is an electrophilic trans- addition, originated from the results obtained in oxidations of phenylacetylenes, where the postulated intermediate is trapped by an internal cyclization. The remarkable ease of substitution of the β-halogen atom, as exemplified by the $1 / 1$ adduct of cis, cis-1,5-cyclooctadiene and TeCl_{4}, seems to explain satisfactorily the introduction of the first acetoxy group into the final diol diacetate or diol monoacetate (although we could not isolate any well-defined product upon acetolysis of IV). Introduction of a second acetoxy group or a hydroxy group may involve a nucleophilic displacement of a tellurium compound, and much work remains to be done to elucidate the nature of this reaction. 1,2 metal oxygen shift has been postulated in the oxidative cleavage of alkylphenyl tellurides and selenides [11]. A similar mechanism may well operate if one of the original TeO_{2} oxygens still remains on the Te atoms at this stage of the reaction.

Experimental

Materials

cis-2-Butene, trans-2-butene, 1-decene and cis, cis-1,5-cyclooctadiene were obtained from Fluka. TeCl_{4} was a Merck product. Z-1-Deuterio-1-decene was pre-
pared as described in the literature [9]. Chloroform was shaken several times with water and dried over CaCl_{2}.

Analysis and spectroscopic measurements

Elemental analysis was performed by Centrala Analyslaboratoriet, Uppsala Sweden. NMR spectra were recorded on a Bruker WP 200 instrument. Infrared spectra were obtained using a Perkin-Elmer 257 instrument. Mass spectra were obtained with an LKB 9000 mass spectrometer. For the GLC analysis a glass column containing 2% OV 17 on AW-DMCS Chromosorb W 80-100 was used.

8-Chloro-4-cyclooctenyltellurium trichloride(IV). $\mathrm{TeCl}_{4}(7.5 \mathrm{~g}, 27.8 \mathrm{mmol})$ was added with stirring to an ice-cold solution of cis, cis-1,5-cyclooctadiene (3.0 $\mathrm{g}, 27.7 \mathrm{mmol}$) in 50 ml of dry ethanol-free chloroform. After $12 \mathrm{~h} 6.7 \mathrm{~g}(64 \%$ yield m.p. 99- $100^{\circ} \mathrm{C}$) could be filtered off. IR $\nu_{\max }^{\mathrm{KBr}}\left(\mathrm{cm}^{-1}\right): 1484 \mathrm{~m}, 1435 \mathrm{~m}$, $1429 \mathrm{~m}, 1353 \mathrm{w}, 1339 \mathrm{w}, 1245 \mathrm{w}, 1131 \mathrm{~m}, 1082 \mathrm{w}, 1059 \mathrm{~m}, 976 \mathrm{w}, 935 \mathrm{~m}, 878 \mathrm{~m}$, $869 \mathrm{w}, 830 \mathrm{w}, 793 \mathrm{~s}, 746 \mathrm{~s}, 739 \mathrm{~s}, 645 \mathrm{w}$. Mass spectrum m / e (rel. intensity): 343 $(M-\mathrm{Cl})^{+}(2), 341(2), 310(2), 308(6), 306(5), 304(4), 272(8), 270(8), 260(12)$, 258(20), 256(20), 254(15), 252(8), 202(9), 200(21), 198(16), 196(7), 167(9), $165(29), 163(26), 161(14), 144(11), 143(9), 142(8), 130(11), 128(11), 118(9)$, 116(24), 109(21), 108(41), 107(100), 106(25), 105(31), 104(7), 103(13), $102(6), 101(11) .{ }^{13} \mathrm{C}$ NMR (proton noise decoupled, $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 23.96$, $25.43,28.54,38.39,66.93,82.82,128.28,129.73 \mathrm{ppm}$.

8-Ethoxy-4-cyclooctenyltellurium trichloride(VI). 8-Chloro-4-cyclooctenyltellurium trichloride ($3.1 \mathrm{~g}, 8.2 \mathrm{mmol}$) was refluxed in 40 ml ethanol, for $1 \frac{1}{2} \mathrm{~h}$. Cooling of the filtered solution $\left(-15^{\circ} \mathrm{C}\right)$ caused separation of colourless prisms melting at $138-140^{\circ} \mathrm{C}$. Yield $2.4 \mathrm{~g}(76 \%)$. IR $\nu_{\max }^{\mathrm{KBr}}\left(\mathrm{cm}^{-1}\right): 3005 \mathrm{w}, 2940 \mathrm{~m}$, $1461 \mathrm{w}, 1441 \mathrm{~m}, 1396 \mathrm{w}, 1368 \mathrm{w}, 1225 \mathrm{w}, 1200 \mathrm{w}, 1119 \mathrm{w}, 1060 \mathrm{w}, 1038 \mathrm{~s}, 1029 \mathrm{~s}$, $975 \mathrm{~s}, 902 \mathrm{~m}, 848 \mathrm{~m}, 800 \mathrm{w}, 730 \mathrm{~s}, 670 \mathrm{~m}$. Mass spectrum m/e (rel. intensity): 353 $(M-\mathrm{Cl})^{+}(12), 351(15), 318(25), 316(18), 314(12), 283(22), 282(42), 281(20)$, 280(40), 279(12), 278(28), 277(12), 151(15), 123(13), 109(12), 107(90), 106(37), 105(100). Analysis. Found: C, $30.95 ; \mathrm{H}, 4.38 ; \mathrm{Cl}, 27.20 ; \mathrm{Te}, 32.53$. $\mathrm{C}_{10} \mathrm{H}_{1}{ }_{7} \mathrm{Cl}_{3} \mathrm{OTe}$ calcd.: $\mathrm{C}, 30.99 ; \mathrm{H}, 4.42 ; \mathrm{Cl}, 27.46 ; \mathrm{Te}, 32.95 \%$.

8-(2-Hydroxyethoxy)-4-cyclooctenyltellurium trichloride (VIII). 8-Chloro-4cyclooctenyltellurium trichloride ($0.20 \mathrm{~g}, 0.53 \mathrm{mmol}$) was heated with 2 ml of ethylene glycol for 5 min over a water bath. Cooling of the clear solution precipitated $0.19 \mathrm{~g}(90 \%)$ white crystals, which were recrystallized from acetonitrile, m.p. $108-110^{\circ} \mathrm{C}$. IR $\nu_{\max }^{\mathrm{KBr}}\left(\mathrm{cm}^{-1}\right): 3600-3100 \mathrm{~s}, 3010 \mathrm{w}, 2940 \mathrm{~m}, 1525 \mathrm{w}, 1500 \mathrm{~m}$, $1475 \mathrm{w}, 1210 \mathrm{w}, 1160 \mathrm{~s}, 1085 \mathrm{~m}, 1060 \mathrm{~m}, 1010 \mathrm{w}, 985 \mathrm{~m}, 885 \mathrm{~m}, 840 \mathrm{~m}, 805 \mathrm{w}, 74$ 745 m . The ${ }^{1} \mathrm{H}$ NMR spectrum showed a multiplet for the olefinic protons at 5.80 ppm and multiplets for the protons CHO and CHTe at 4.95 and 4.22 ppm , respectively. The two non-cyclic methylene groups appeared poorly resolved at 3.90 ppm . The 9 remaining protons were poorly resolved in the range from 2.70 to 2.00 ppm .

Oxidation of cis-2-butene. cis-2-Butene ($2.0 \mathrm{~g}, 35.7 \mathrm{mmol}$), $\mathrm{TeO}_{2}(3.0 \mathrm{~g}, 18.8$ mmol) and $\operatorname{LiBr}(1.5 \mathrm{~g}, 17.2 \mathrm{mmol})$ were heated with 35 ml HOAc in a sealed tube at $90^{\circ} \mathrm{C}$ for 20 h . The mixture containing precipitated tellurium was poured. into $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, neutralized with NaHCO_{3} and extracted with $2 \times 50 \mathrm{ml}$ ether. The etherial solution, after drying over CaCl_{2}, and evaporation, yielded 0.75 g 2,3-butanediol monoacetate (16.0%) and $1.20 \mathrm{~g} 2,3$-butanediol diacetate
(19.3\%). Yields were determined with a preparative $\mathrm{SiO}_{2}-\mathrm{TLC}$ plate using ethylacetate/hexane $2 / 1$ as eluent and the products were compared to original samples. The meso/d, l-ratio was determined gas-chromatographically and found to be:for the diol diacetates meso/d, l 89/11, for the diol monoacetates (after acetylation in refluxing acetic anhydride) meso/d, l 91/9.

Oxidation of trans-2-butene. trans-2-Butene ($2.0 \mathrm{~g}, 35.7 \mathrm{mmol}$), $\mathrm{TeO}_{2}(3.0 \mathrm{~g}$, $18.8 \mathrm{mmol})$ and $\operatorname{LiBr}(1.5 \mathrm{~g}, 17.2 \mathrm{mmol})$ were heated with 35 ml HOAc in a sealed tube at $90^{\circ} \mathrm{C}$ for 20 h . The mixture, which contained precipitated tellurium, was poured into $100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, neutralized with NaHCO_{3}, and extracted with $2 \times 50 \mathrm{ml}$ ether. The ethereal solution was dried over CaCl_{2} and evaporated to give $1.00 \mathrm{~g} 2,3$-butanediol monoacetate (21.1%) and $0.57 \mathrm{~g} 2,3$-butanediol diacetate (9.2%). Yields were determined with a preparative SiO_{2}-TLC-plate using ethylacetate/hexane(2/1) as eluent, and the products were compared with authentic samples. The meso/d, l-ratio was determined gas-chromatographically and found to be: for the diol diacetates meso/d, $L 35 / 65$, for the diol monoacetates (after acetylation in refluxing acetic anhydride) meso/d, $l 33 / 67$.

Oxidation of 1-decene and Z-1-deuterio-1-decene. 1-Decene ($1.0 \mathrm{~g}, 7.1 \mathrm{mmol}$), $\mathrm{TeO}_{2}(2.0 \mathrm{~g}, 12.5 \mathrm{mmol})$ and $\mathrm{LiBr}(1.0 \mathrm{~g}, 11.5 \mathrm{mmol})$ were refluxed in 40 ml HOAc for 12 h . The mixture, which contained precipitated tellurium, was poured into $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, neutralized with NaHCO_{3}, and cxtracted with 2×50 ml ether. The ethereal solution was dried over CaCl_{2} and evaporated to give 1.6 g pure (by GLC and NMR analysis) 1,2-decanediol diacetate (87\%).

Z-1-Deuterio-1-decene was oxidized in the same way to yield the corresponding diol diacetate, with a ${ }^{1} \mathrm{H}$ NMR spectrum containing two doublets for the $\mathrm{H}(1)$ proton at $\delta 3.95 \mathrm{ppm}$ and $\delta 4.60 \mathrm{ppm}$, the integration ratio being $1 / 1$.

Reduction of 4 with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$. An ether suspension of 0.3 g 8 -chloro- 4 -cyclooctenyltellurium trichloride was shaken with an aqueous solution of 1.0 g $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ for a few minutes, during which elemental tellurium separated. Drying of the ether solution with CaCl_{2} and evaporation yielded pure cis, cis-1,5-cyclooctadiene, as revealed by GLC and NMR analysis.

Acknowledgements

The X-ray investigation was carried out by L. Engman as an excercise in a graduate course given by Professor I. Grenthe and Dr. G. Johansson at the Department of Inorganic Chemistry of this Institute, they and their colleagues are thanked for their valuable teaching, advice, and interest in this X-ray investigation. A generous donation from the "Knut och Alice Wallenberg Stiftelse" to the Department of Chemistry at the Royal Institute of Technology made it possible to obtain the computer-controlled four-circle diffractometer with a complete program system for structure determinations.

References

[^2]6 N. Sonoda, S. Furui, K.A. Javaid and S. Tsutsumi, N.Y. Acad. Sci., (1971) 49.
7 K.A. Javaid, N. Sonoda and S. Tsutsumi, Bull. Chem. Soc. Jap., 43. (1970) 3475.
8 N. Miyoshi, Y. Takai, S. Murai and N. Sonoda, Bull. Chem. Soc. Jap., 51 (1978) 1265.
9 G. Wilke and H. Müller, Justus Liebigs Ann. Chem., 618, (1958) 267.
10 J.E. Bäckvall, Tetrahedron Lett., (1977) 467.
11 K.B. Sharpless, K.H. Gordon, R.F. Lauer, D.W. Patrick. S.P. Singer and M.W. Young, Chemica Scripta, A. 8 (1975) 9.

12 A. Toshimitsu, Y. Kozawa, S. Uemura and M. Okano. J. Chem. Soc. Perkin I, (1978) 1273.
13 D.L. Clive and S.M. Menchen; J. Chem. Soc. Chem. Commun., (1977) 658.
14 M. Sandström and I. Persson, Acta Chern. Scand., A, 32 (1978) 95.
15 Syntex Analytical Instruments Inc. 10040 Bubb Road. Cupertino, California 95014, USA.
16 G. Kopfmarin and R. Huber, Acta Cryst. A, 24 (1968) 348 and A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Cryst. A, 24 (1968) 351.
17 K.J. Ixgolic, The Organic Chemistry of Tellurium, Gordon and Breach, N.Y, 1974, p. 356.
18 D. Kobelt and E.F. Paulus, J. Organometal. Chem., 27 (1971) C63.
19 B. Buss and B. Krebs, Angew. Chem., 82 (1970) 446.
20 C.K. Johnson, A FORTRAN Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, 1976.
21 M.M. Mangion, R.A. Zingaro and E.A. Meyers, Chemica Scripta, A, 8 (1975) 45.
22 F. Einstein, J. Trotter and C. Williston, J. Chem. Soc. A, (1967) 2018.
23 J. Bergman and L. Engman, J. Organometal. Chem., 175 (1969) 233.

[^0]: * For part 4, see ref. 23.

[^1]: ${ }^{a}$ Isolated yield. ${ }^{b}$ Monoacetates were converted to diacetates with acetic anhydride and determined by GLC.

[^2]: 1 J. Bergman. Kemisk Tidskrift, (1976) 62.
 2 German Offenlegungsschrift 2.632.158 (1977) (to Chem. Systems Inc.).
 3 United States Patent 3,637,515 (to Celanese Corporation).
 4 J. Bergman and L. Engman, Tetrahedron Lett., (1979) 1509.
 5 D. Kobelt and E.F. Paulus, Angew. Chem. Int. Ed., 10 (1971) 74.

